我们知道如果一个三角形的三边长固定,那么这个三角形就固定.若给出任意一个三角形三边长,你能求出它的面积吗?翻阅了各种资料后发现,古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为
这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。
中国宋代的数学家秦九韶在年也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式
其实这两个公式实质是一致的,聪明的你能够推导出来吗?
对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决下面的问题:
赞赏
人赞赏
推荐文章
热点文章